报告题目:具有非线性边界的反应扩散对流模型的稳定性和分支分析
报告时间:10月7日(星期五)19:30-20:30
报 告 人:戴斌祥(中南大学)
报告地点:腾讯会议(286-977-716)
报告人简介:
戴斌祥,中南大学数学与统计学院二级教授、博士生导师。湖南省数学学会常务理事、高等教育与大学数学竞赛工作委员会副主任委员、中国数学会生物数学专业委员会常务理事。主要从事时滞微分方程与离散动力系统、种群生态学与传染病学、反应扩散方程的定性理论与应用等领域的研究,先后获得湖南省科技进步一等奖和湖南省自然科学一等奖各1项,主编出版教材6部,2020年获得全国宝钢教育基金优秀教师奖。
报告摘要:
In this talk, we consider a reaction-diffusion-advection population model with nonlinear boundary condition. Firstly, the stability of the trivial steady state is investigated by studying the corresponding eigenvalue problem. Secondly, the existence and stability of nontrivial steady states are proved by applying the Crandall-Rabinowitz bifurcation theorem, the Lyapunov-Schmidt reduction method and perturbation method, in which bifurcation from simple eigenvalue and that from degenerate simple eigenvalue are both possible. The general results are applied to a parabolic equation with monostable nonlinear boundary condition.